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a b s t r a c t

In a data center, virtual machine consolidation has been proposed to improve the resource utilization
and energy efficiency. An effective and efficient virtual machine consolidation method should achieve an
appropriate balance among multiple goals, including guaranteeing service quality, reducing energy con-
sumption and maximizing resource utilization. This problem is a multi-objective optimization problem
with multiple resource constraints. To solve this problem, we propose an energy-aware dynamic virtual
machine consolidation (EC-VMC) method that migrates virtual machines while satisfying constraints on
the probabilities of multiple types of resources being overloaded. In ourmethod, a series of algorithms for
selecting and placing virtual machines to be migrated are utilized, with constraints on the probabilities
of various resources in a physical machine being overloaded. Our algorithms integrate and cooperate
similarly to artificial bee colony foraging behavior to perform an optimized search for the mapping
relation between virtual machines and physical machines for consolidation. Extensive simulation is
conducted to compare our EC-VMC method with previous virtual machine consolidation methods. The
simulation results demonstrate that the EC-VMC method effectively overcomes the deficiencies of some
existing heuristic algorithms and is highly effective in reducing VM migrations and energy consumption
of data centers and in improving QoS.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

High energy consumption is a major challenge for resource
management in data centers. As a data center continues to expand,
the problem of high energy consumption becomes more promi-
nent [1]. A survey by International Business Machines (IBM) [2]
suggests that the average CPU utilization of physical machines in
a data center is only 15%∼20%, and a physical machine in an idle
state typically consumes 70% of its peak energy consumption [2,3].
Idle physical machines (PMs) with underutilized resources in a
data center indicate low energy efficiency and tremendous energy
waste.

Virtualization technology enables a cloud-computing service
provider to create multiple VMs in a single physical machine (PM)
and perform load balancing via virtualmachine (VM)migration. As
a major technology for improving energy efficiency and resource
utilization in a data center, virtual machine (VM) consolidation
has been extensively investigated [4–10]. A data center can pe-
riodically consolidate VMs and turn off some underutilized PMs
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based on VM and PM resource utilization to reduce energy con-
sumption and improve resource utilization. However, because of
the stochastic variation of workload in data centers, overly radical
VM consolidation will negatively influence resource reservations
in PMs, which leads to Service Level Agreement (SLA) violations.
Therefore, minimizing energy consumption and maximizing re-
source utilization while guaranteeing quality of service (QoS) is a
major challenge for VM consolidation in data centers.

The main strategy of VM consolidation is to define the static
overload threshold or upper bound of CPU utilization to identify
the overload status of the physical machine and the lower bound
of CPU utilization to identify the underutilized PMs. VMmigration
or VM consolidation is triggered based on these thresholds to
achieve the goal of reducing energy consumption and improving
QoS. Such methods [3,11] are simple but lack flexibility to adapt
to the dynamic workload in a data center. A dynamic overload
threshold [12] is proposed for VM migration that considers the
workload variations on source and destination hosts after VM
migrations, but it does not consider load rebalancing of data cen-
ters if the workloads on these hosts have changed. Some existing
methods [7–10] only focus on VMmigration but ignore the impact
of VMmigration on resource consumption and service quality. For
instance, as a VM in live migration suspends its service, prolonged
VMmigration likely affects the service quality [13].
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Usually, VM consolidation methods can be either single re-
source based [3–11] or multiple resource based [14,15]. Because
the CPU resource is a key factor that influences energy consump-
tion of data centers, numerous studies have investigated how to
improve the energy efficiency via the allocation of CPU resources,
such as the methods proposed in [3–11]. However, these methods
only consider the CPU resource. Factors such as memory, band-
width and disk utilization should also be considered for VM con-
solidation, since they are also key factors that affect QoS. However,
at the same time, multi-resource based VM consolidation can be
more complex. For instance, previous work [14] proposed a multi-
resource VM consolidation method that involves more complex
assumptions andmathematical calculations due to multi-resource
consideration.

To address the limitations of existing VM consolidation meth-
ods, we consider the VM consolidation problemwith the following
constraints: (1) VM dynamic consolidation should trigger as few
VM migrations as possible to minimize the negative impact on
QoS; (2) in a data center, the VM-generated workload is complex
and dynamic, and the VM consolidation strategy should minimize
the probability of the physical machines being overloaded; (3) VM
dynamic consolidation should turn off as many underloaded PMs
as possible to reduce energy consumption of data centers; and
(4) resources such as memory and network are the major factors
that affect QoS, so VM consolidation should allow a comprehensive
treatment of such multi-resources. Based on these considerations,
we propose an energy-aware dynamic optimization approach,
called EC-VMC, for VM consolidation with constraints over over-
load probabilities for multiple types of resources. It consists of
multiple algorithms corresponding to different phases of VM dy-
namic consolidation. Our algorithms simulate artificial bee colony
foraging behavior to find the mapping relation between PMs and
VMs. By using the searchingmechanism and optimization strategy
of the artificial bee colony (ABC) algorithm [16], an approximate
feasible solution is obtained via the iterative searches. Our major
contributions, in detail, are as follows.

(1) First, through deeper research, we note that VM consol-
idation is a multi-objective optimization problem with multiple
resource constraints;

(2) Then, by assuming the mapping relation between PMs and
VMs as the food source, the proposed sub-algorithms integrate and
cooperate to simulate the artificial bee colony foraging behaviors;
by using both the searching mechanism and optimization strategy
of the artificial bee colony ABC algorithm, the optimum mapping
relation with multi-resource constraints between PMs and VMs is
obtained;

(3) Next, the issue of ‘‘where from and where to’’ for live
VM migration is globally optimized and examined. Results on
achieving appropriate balance among guaranteeing service quality,
reducing energy consumption andmaximizing resource utilization
are promising;

(4) At last, the proposed EC-VMC method overcomes the lim-
itation of falling into local optima that some existing algorithms
have, such as the well-known heuristic BFD (Best Fit Decreasing)
algorithm. Validation and experimental comparison are conducted
using the CloudSim platform. The experimental results indicate
that the proposed EC-VMC method has a distinct advantage in
terms of reducing energy consumption, VM migrations and im-
proving QoS.

The rest of the paper is organized as follows. Section 2 presents
the related works. Section 3 identifies and describes our optimiza-
tion objective with multi-resource constraints. Section 4 presents
the overviewand the detailed design of ourVMdynamic consolida-
tion. Section 5 presents the performance evaluation of our scheme
comparedwith other VM consolidationmethods. Finally, Section 6
concludes this paper and discusses our future work.

2. Related works

A VM consolidation scheme should identify the VMs that
should be migrated and the PMs that can be turned off. It sub-
sequently solves the issue of to where the VMs should be mi-
grated, i.e., the issue of identifying the source and destination
hosts for the VMs in live migration. In summary, ‘‘where from
where to’’ is the core issue of VM migration or VM consolidation.
Many works [3,12,14,15,17–31] examine this issue from differ-
ent perspectives, such as VM placement [19–22], host overload
detection [3,12,22–27], and VM migration selection [22,28,29]. In
this section, we mainly discuss single-resource VM consolidation
and multi-resource VM consolidation from the aspect of resource
allocation.

2.1. Single-resource VM consolidation

It is relatively simple to study host overload detection, VM mi-
gration and VM consolidation via the assignment of CPU resource.
In previous studies [3,11], the upper and lower boundaries of
CPU utilization were defined to classify PMs into three categories:
underloaded, normal and overloaded. Some VMs were migrated
from the overloaded physical machine to achieve the goals of per-
forming load balancing, improving QoS and degrading the risk of
overloading the CPU resource. The migrated VMs were redeployed
in the normal PMs. All VMs in the underloaded physical machine
weremigrated, and the hostswere turned off to reduce energy con-
sumption.However, theworkload is random, and thehost overload
detectionmethod, which is based on a fixed threshold, is incapable
of adjusting the reserved idle resources according to the uncertain
workload, which hinders the use of the VM consolidation method
to properly allocate resources and causes undesired situations,
such as poor service performance and high energy consumption.

Beloglazov A. et al. [22] made improvements based on the
developments in [3] and proposed an adaptive heuristic VM dy-
namic consolidationmethod that analyzed the historical workload
variation pattern of PMs and adaptively adjusted the overload
threshold. Beloglazov A. et al. [22] proposed three host overload
detection algorithms: the Median Absolute Deviation (MAD) al-
gorithm, Interquartile Range (IQR) algorithm and Local Regres-
sion (LR) algorithm. The MAD and IQR algorithms measure the
workload stability by calculating the median absolute deviation
and interquartile range of recent CPU utilization, respectively. The
overload threshold is decreased to reserve more resources for PMs
with unsteady workloads. In this manner, the resource demands
in the next phase are guaranteed and service quality is improved.
However, the MAD and IQR algorithms disregard the recent work-
load variation trend. The result is that a physical machine with an
unsteady load always needs to reserve a large number of resources,
which actually decreases resource utilization and increases en-
ergy consumption. The LR algorithm forecasts CPU utilization via
a local regression method and leverages the forecast value to
proactively prevent physical machine overloading. However, for
a highly fluctuating workload, obtaining an accurate prediction is
difficult for the LR algorithm. To transfer workload by migrating
some VMs from a physical machine with overload risk, Beloglazov
A. et al. [22] proposed three VM migration selection algorithms:
MinimumMigration Time (MMT), Maximum Correlation (MC) and
Random Selection (RS). To realize VM placement, Beloglazov A.
et al. [22] proposed the power aware best fit decreasing (PABFD)
algorithm. First, the PABFDalgorithmarranges theVMs in descend-
ing order based on the resource demand. Second, the migration of
each VM is evaluated, and a physical machine with a minimum
increase in energy consumption after VM placement is selected
as the migration destination. The PABFD algorithm allocates the
migrated VMs to the hosts with high energy efficiency; however,
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a reassessment of resource utilization and overload risk for the
physical machine is not performed after VM migrations, which
easily results in load imbalance.

On the basis of the developments in [3], some other approaches
primarily forecast the resource utilization of PMs via an intelligent
algorithm or adaptively adjust the threshold of CPU utilization.
Shaw S. B. et al. [23] proposed a workload forecast via double-
exponential smoothing. However, double-exponential smoothing
parameters are difficult to determine in a dynamic load envi-
ronment. Farahnakian F. et al. [24] predicted the upcoming re-
source utilization via the k-nearest-neighbor algorithm and com-
bined two factors – current workload and forecasted workload –
when determining physical machine overload risk. However, fast
adaptive k-value selection is difficult to achieve. Farahnakian F.
et al. [12] forecasted CPU utilization during VM consolidation via
a linear regression method similar to that in [22]. Masoumzadeh
S. S. et al. [25] learned the historical set of overload thresholds in
different states of a data center via Fuzzy Q-learning and obtained
a decision model to adjust the overload threshold to a proper
value based on the state of the physical machine. However, this
method required a long period of learning to converge and could
not rapidly adapt to the environment. Moreover, the method is
unable to use the recent workload variation pattern to determine
whether the physical machine is overloaded. Masoumzadeh S. S.
et al. [26] conducted a similar study, in which a proper overload
threshold and a VM migration selection strategy was selected via
a Q-learning method and were based on the CPU utilization of PMs
and the quantity of VMs. However, this approach has the same
deficiency as that in [25]: recent host workload variation is not
considered in host overload identification.

Additionally, extensive research was also conducted based on
the developments in [3]. For instance, Farahnakian F. et al. [12,18]
forecasted the CPU or other resource utilization to ensure adaptive
adjustment of the algorithm based on the dynamic workload.
However, the aforementioned studies are based on heuristic al-
gorithms, such as BFD [3,11], to redeploy the VMs. Due to the
deficiencies of the algorithms themselves, thesemethods are likely
to fall into local optima [3,11,12,18].

2.2. Multi-resource VM consolidation

In a real data center, VM consolidation is essentially a multi-
resource scheduling or allocation issue because it is influenced
by various factors, such as CPU utilization, memory utilization,
bandwidth, and disk size. Farahnakian F. et al. [30] proposed the
utilization prediction-aware best fit decreasing (UP-BFD) method.
UP-BFD forecasts VM resource utilization, such as CPU and mem-
ory, based on the k-nearest-neighbor method, which is similar
to the method in [24]. When conducting host overload detection
and re-allocating VMs, both the current utilization and forecasted
utilization of multiple resources are considered. However, UP-BFD
cannot rapidly and adaptively determine a proper k value. Mishra
M. et al. [15] proposed a vector-arithmetic-based multi-resource
VM consolidation method. In this method, all resources are classi-
fied into three categories based on utilization—high, medium and
low. VMs are classified into six categories based on VM resource
utilization. VM placement is based on the proposed VM category
matching rule. However, this method disregards the randomness
of demands for each resource. VM dynamic consolidation is a
nondeterministic polynomial-time (NP) hard problem, for which
an optimization solution is difficult to obtain when the quantities
of PMs and VMs are excessive. Therefore, Mishra M. et al. [15]
investigated how to leverage greedy heuristic algorithms, such
as BFD and FFD, to calculate a quasi-optimal solution. Although
this solution reduces the computation cost, it easily falls into a
local optimum. To address this problem, Ferdaus M. H. et al. [14]

proposed a VM consolidation algorithm based on the ant colony
optimization algorithm. This algorithm considers factors such as
CPU, memory and network bandwidth resources and defines min-
imizing the energy consumption of data centers as an optimization
objective. However, this algorithm does not consider the dynamic
workload of VMs, lacks constraint on the scales of VMs and PMs
to ensure the feasibility of VM consolidation and disregards the
potential negative influence of high-volume VM migrations. To
address these issues, Farahnakian F. et al. [31] proposed a VM
consolidation algorithm based on ant colony system (ACS-VMC).
In this algorithm, minimizing the number of running PMs and the
number of VMmigrations is defined as the optimization objective.
The detection of overloaded and underloaded PMs is performed via
the forecasting algorithm [12] and the method based on the upper
and lower boundaries of CPU utilization [3]. These methods effec-
tively reduce the problem search space and limit the total number
of VMs to ensure the feasibility of VM consolidation. However,
Farahnakian F. et al. [31] disregarded the randomness in demands
for memory and network bandwidth. This algorithm detects the
underloaded physical machines by defining the lower bound on
CPU utilization, which makes it unable to adaptively determine
which underloaded PMs should be turned off based on the load
distribution of the data center.

Besides, other topics have also been addressed. KaaouacheM. A.
et al. [19] studied the VM placement problem. The VM placement
problem was abstracted as a bin-packing problem. A heuristic
algorithm or intelligent optimization algorithm was enhanced to
improve the mapping relation between VMs and PMs for a specific
optimization objective. Aroca J. A. et al. [32] classified the VM
placement issue based on a quantitative constraint between VMs
and PMs; competitive ratio analysis was also performed to analyze
the VM placement algorithm. Chen L. et al. [28] treated the VM
migration decision issue as a Markov decision process. Based on
the current workload, the VMs with a specific state were selected
for migration to reduce the probability of VM re-migration and
achieve the goal of load balancing. Sohrabi S. et al. [29] considered
that live VM migration would suspend service, prolonged VM
migrations could affect QoS and migrating VMs with ‘‘minimum
migration time’’ could not effectively eliminate the resource over-
load risk of PMs. Therefore, the median migration time strategy
was proposed to migrate the VMs with median migration time
from the overloaded PMs. Voorsluys W. et al. [13] suggested that
live VM migration may consume extra computing resources and
network bandwidth since a virtual machine in migration sus-
pends its service. Therefore, inefficient VM migration incurs SLA
violations and induces extra resource and energy consumption.
Beloglazov A. et al. [3] considered the negative effects of frequent
VM migration, and therefore, the high-workload VMs were given
priority to migrate from the overloaded physical machine. How-
ever, Mann Z. Á. et al. [17] theoretically proved that this method
was unable to guarantee the minimal number of VM migrations,
i.e., unnecessary VMmigrations occurred. Additionally, some other
potential issues such as the energy cost minimization using some
effective schemes [33], data-oriented disaster recovery [34], VM-
targeting attack [35] and so on, are alsomeaningful and benchmark
works for data centers.

The proposed study conducts research on VM consolidation
with sufficient consideration of the optimization requirements of
energy efficiency; benefit of degrading the total number of VM
migrations; comprehensive treatment of resources including CPU,
memory and network bandwidth; and uncertainty in demands for
each resource in data centers. Accordingly, we propose an EC-VMC
method. First, multi-resource constraints with sufficient consider-
ation of the randomness of each resource have been established
to perform credible estimation of the energy consumption and
VM migrations and to obtain multi-resource overload probability



142 Z. Li et al. / Future Generation Computer Systems 80 (2018) 139–156

estimates via the statistical methods. Second, VM consolidation is
abstracted as a multi-objective optimization problem with multi-
ple resource constraints; a VMdynamic consolidation optimization
model is established. Third, several sub-algorithms corresponding
to different phases of VM dynamic consolidation are proposed,
which complete each sub-task of VM consolidation. Finally, the
mapping relation between PMs and VMs is assumed as a food
source, and the inter-cooperation of sub-algorithms simulates ar-
tificial bee colony foraging behavior. By using both the searching
mechanism and optimization strategy of the artificial bee colony
(ABC) algorithm, an approximate feasible solution is obtained. Con-
sequently, the EC-VMCmethod is capable of achieving appropriate
balance among guaranteeing service quality, reducing energy con-
sumption and maximizing resource utilization.

3. Virtual machine dynamic consolidation description

3.1. Data center resource assumption

This section describes the resource assumption of data centers
in this paper. Assume that H = {h1, h2, . . . , hi, . . . , hn} is the
physical machine set; VM = {vm1, vm2, . . . , vmj, . . . , vmm} is the
virtual machine set; and VMi is the virtual machine set deployed
in the physical machine hi. xij ∈ {0, 1}, where if xij = 1, the
virtual machine vmj is deployed in the physical machine hi, which
is denoted as vmj ∈ VMi; otherwise, the virtual machine vmj
is not deployed in the physical machine hi, which is denoted as
vmj ̸∈ VMi. The matrix X = (xij)n×m describes the mapping
relation between the PMs and VMs. RS is the resource category
set, including the CPU,memory and network bandwidth resources,
i.e., RS = {CPU,MEM, BW }. C r (vmj) is the actual configured
capacity of resource r , r ∈ RS, in virtual machine vmj; C r (hi) is
the configurable capacity of resource r in the physical machine hi;
Dr (vmj) is the demand of the virtual machine vmj for the resource
r (unit: percentage); and U r (hi) is the actual utilization of the
resource r in the physical machine hi; the U r (hi) calculation is
shown in formula (1).

U r (hi) =
1

C r (hi)

∑
vmj∈VMi

Dr (vmj) · C r (vmj) (1)

3.2. Data center energy consumption estimation

High energy consumption is a major challenge in data centers.
With thewidespread use of cloud-computing technology, the scale
of cloud data centers is expanding, and the problem of high energy
consumption is more prominent. Data center energy consumption
is not only from the running physical machines but also the com-
puter air conditioning unit (CRAC) and other network equipment
such as routers. The green cloud-computing model [36,37] focuses
on optimizing the energy consumption generated by network
equipment and service computing as well, and is very promising.
In this paper, we are mainly concerned with how to improve the
resource utilization of PMs to reduce energy consumption in data
centers.

According to the power consumption data set [38], a diagram
for the relation between CPU utilization and the host power is
provided in Fig. 1. When the CPU utilization is less than 70%, the
approximately linear characteristic is more obvious. In previous
works [3,10,14], the energy consumption of data centers was ap-
proximated by the linear relation between the power consumption
of PMs and the CPU resource utilization. By assuming the linear
relation between the CPU resource utilization and the power of
PMs, a simple unary linear function was constructed to estimate
the energy consumption of hosts in [3,10,14]. However, the accu-
racy is not good enough. In this paper, since the distribution of CPU

Fig. 1. The relation between CPU utilization and host power.

resource utilization in Fig. 1 is equidistant, with each ascending
10% representing a grade, and the relation is approximately linear
in each interval, amethod of estimating energy consumption based
on local linearity is presented. Namely, we assume that the CPU
resource utilization and the power of PMs are linearly related
within each interval. Then, the power of the physical machine hi
can be calculated with formula (2),

fpower (hi) = si ·
L∑

l=1

[
p

′

l (hi) +

(
pl(hi) − p

′

l (hi)
)

· rat(U r (hi), Bl)
]

· Il(hi), r = CPU, si ∈ {0, 1} (2)

where si is affected by the mapping relation matrix X . When∑m
j=1xij > 0, si = 1, which denotes that the physical machines are

running; otherwise, si = 0, which indicates that the physical ma-
chines are asleep. Assume that CPU resource utilization is divided
into L ranges (B1, B2, . . . , Bl, . . . , BL). If the CPU utilization of the
physical machine hi belongs to range Bl, then the function Il(hi) =

1; otherwise, Il(hi) = 0. If Il(hi) = 1 holds, the power of hi can
be estimated as p

′

l (hi) +
(
pl(hi) − p

′

l (hi)
)

· rat(U r (hi), Bl) according
to the local linearity, where pl(hi) represents the upper bound on
the power of hi within the range Bl, and p

′

l (hi) represents the lower
bound on the power of hi within the same range. rat(U r (hi), Bl)
represents the ratio of CPU resource utilizationwithin the range Bl.
For example, if Bl is located inside [30%, 40%) andU r (hi) is 35%,then
rat(U r (hi), Bl) is 0.5. When the X=(xij)n×m distribution precondi-
tion is satisfied, the data center energy consumption estimation is
calculated via formula (3).

Fpower (X) =

∑
hi∈H

fpower (hi) (3)

3.3. The number of VM migrations

The goal of VM consolidation is to determine the mapping
relation between PMs and VMs for VM migration to achieve the
goals of improving QoS and reducing energy consumption. Assume
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the mapping relation between PMs and VMs before VM consolida-
tion is denoted as X=(xij)n×m, and the mapping relation after VM
consolidation is denoted as X̃=(̃xij)n×m. If xij ̸= x̃ij, i.e., themapping
between the virtual machine vmj and the physical machine hi
changes, let yij = 1; otherwise, let yij = 0. Assume that the virtual
machine vmj migrates from the physicalmachine hs to the physical
machine hd; xsj ̸= x̃sj and xdj ̸= x̃dj. This case shows that one
VM migration will generate two unequal relations in the mapping
matrix X . Therefore, the total number of VMmigrations should be
equal to half of

∑n
i=1

∑m
j=1yij. Based on this rule, the number of VM

migrations is estimated by formula (4).

Fmig (X, X̃) =
1
2

n∑
i=1

m∑
j=1

yij (4)

3.4. Multi-resource overload probability estimation

Once the physical machine is overloaded, the service quality
could be substantially affected. During VM consolidation, resource
overloading should be avoided by effectively limiting the utiliza-
tion of resources to within a certain range. However, the workload
of a physical machine is the aggregated workload of the VMs that
it hosts, and a virtual machine’s demand for each resource varies
randomly, which makes it more difficult to obtain deterministic
resource consumption estimates. To address this issue, we use
stochastic demand models for virtual machines’ demands for each
resource.

By constraining the resource overload probability, the optimal
mapping between VMs and PMs can maximize the resource uti-
lization and energy efficiency. The proposed resource overload
probability estimation model is defined in (5),

P r
over (hi) = 1 − Pr(Rr (hi) < C r (hi)), r ∈ RS (5)

where Rr (hi) =
∑

vmj∈VMi
Dr (vmj) · C r (vmj), r ∈ RS. Here, Rr (hi) is

the workload for resource r generated by the VMs deployed in the
physical machine hi.

Existing research [39–42] assumes that the virtual machine’s
demand for a resource follows anormal distribution. Yu L. et al. [42]
analyzed the PlanetLab trace [43] and the Google cluster trace and
discovered that the distribution of these workloads resembled a
normal distribution. Therefore, this paper also assumes that virtual
machines’ demand for each resource follows a normal distribution.
Assume the demand of the virtual machine vmj for resource r
satisfies Dr (vmj) ∼ N(µr (vmj), σ r (vmj)2), where µr (vmj) is the
average demand of the virtual machine vmj for resource r and
σ r (vmj) is the standard deviation of the demand of the virtual
machine vmj for resource r . µr (vmj) and σ r (vmj) are obtained by
analyzing the recent requirement data for resource r . Therefore,
Pr(Rr (hi) < C r (hi)) is calculated via formula (6),

Pr(Rr (hi) < C r (hi)) = Φ

(
C r (hi) − µr (hi)

σ r (hi)

)
(6)

where µr (hi) =
∑

vmj∈VMi
C r (vmj) · µr (vmj) and σ r (hi) =√∑

vmj∈VMi

[
C r (vmi) · σ r (vmj)

]2. Here, Φ is the probability distri-
bution function for the standard normal distribution; µr (hi) is the
average workload for the resource r in the physical machine; and
σ r (hi) is the standard deviation of the workload for resource r in
the physical machine.

3.5. Optimization objective

The dynamic consolidation of virtual machines achieves the
goal of degrading the energy consumption of data centers, opti-
mizing resource utilization and improving QoS by adjusting the

mapping relation between VMs and PMs. However, frequent VM
migrations have a negative influence. Voorsluys W. et al. [13]
suggest that live VM migration consumes extra computing re-
sources; thus, excess VM migrations spur a significant workload
and increase energy consumption. Because a virtual machine in
live migration suspends its service, the service quality is affected.
Therefore, reducing the total number of VM migrations is very
critical.

To address this issue, multiple factors that affect VM consolida-
tion are considered, and accordingly, the following VM consolida-
tion optimization objectives are defined:⎧⎨⎩min Fpower (X̃)

min Fmig (X, X̃)
min P r

over (hi) , ∀hi ∈ H, r ∈ RS

where the data center energy consumption Fpower (̃X), the number
of VM migrations Fmig (X, X̃) and the overload probability for each
resource P r

over (hi).
To simplify the optimization objectives, these multi-objective

optimization problems are converted. First, min P r
over (hi) is con-

verted to an ‘‘ε -constraint’’ problem, i.e., P r
over (hi) < ε . Here, ε

is the upper limit of the overload probability for resource r . There
is a credibility problem with the resource r overload probability
estimation. Higher current physical machine resource utilization
suggests higher overload risk for the physicalmachine. Therefore, ε
is adaptively changed according to the physicalmachineworkload.
In this manner, the ‘‘ε-constraint’’ is converted to formula (7),

P r
over (hi) <

1 − U r (hi)
s

, ∀hi ∈ H, r ∈ RS (7)

where parameter s defines the ε variation scope. A smaller s indi-
cates that the variation in ε is more sensitive, and higher physical
machine resource utilization means a lower ε, which strengthens
the alert for resource overloading.

Two optimization objectives, the data center energy consump-
tion and the number of VMmigrations, are integrated into formula
(8) via a linear weighting method,

F (X, X̃) = Fpower (X̃) + wmigFmig (X, X̃) (8)

where wmig is the relative weight of migrations, which is an expe-
rience parameter that is learned from several tests.

To facilitate the solution of this problem, the minimization
problem is converted to a maximization problem, i.e., formula (8)
is converted to formula (9),

Fcon(X, X̃) =
[
Fmax
power − Fpower (X̃)

]
+ wmig

[
m − Fmig (X, X̃)

]
(9)

where Fmax
power =

∑
hi∈H

PL (hi) represents the maximum energy
consumption of data centers and m is the total number of VMs or
the upper limit of the VMmigrations.

After this transformation, the optimization objective of the VM
dynamic consolidation is simplified as the optimization problem
shown in formula (10).⎧⎪⎨⎪⎩

max Fcon(X, X̃)
s.t.

P r
over (hi) <

1 − U r (hi)
s

, ∀hi ∈ H, r ∈ RS
(10)

The optimization problem shown in formula (10) is investigated
and solved in Section 4.

4. EC-VMC dynamic consolidation method

4.1. VM migration selection

To solve formula (10) and obtain X̃ , all resources in all PMs
should satisfy the constraint defined in formula (7). Some VMs
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are migrated from the PMs that do not satisfy the constraint or
are overloaded. Therefore, the VM migration selection criteria are
very critical. Improper selection criteria may incur excessive VM
migrations, extra computational workloads and prolonged virtual
machine service suspensiondue to prolongedVMmigration,which
can affect QoS. Therefore, the following VM migration selection
strategy is defined: the VMs that have relatively shorter migration
times and can significantly reduce the multiple-resource overload
risk of PMs after migration are selected. Migration of these VMs is
helpful for reducing both the VM migration time and the number
of VM migrations. After the virtual machine vmj is migrated from
the physical machine hi, the resource r overload probability is
estimated via formula (11) and the resource overload probability
descending gradient is calculated via formula (12).

P r
over (hi, −vmj) = 1 − Pr(Rr (hi) − Dr (vmj) < C r (hi)) (11)

∆pover (hi, −vmj) =
1

|RS|

∑
r∈RS

P r
over (hi) − P r

over (hi, −vmj) (12)

Live VM migration generally uses the pre-copying method. In
each cycle of iteration, the dirty pages in memory will be re-
transmitted until the number of dirty pages is less than the set
threshold, and then it conducts the last roundof dirty pagememory
transfer. According to the model developed in [44,45], the migra-
tion time of the virtual machine from the physical host is the sum
of the times spent for multiple memory page transfers. In terms
of this rule, Liu H. et al. [45] proposed a base model of migration
performance, which is based on the current usage ofmemory, dirty
page rate, and data transfer rate, to estimate the migration time
of the virtual machine and the total network traffic; this paper
also uses this model to estimate the migration time Tmig (hi, vmk)
from the physical host hi to the virtualmachine vmk. Moreover, the
probability of VM migration integrates the migration time of the
virtual machine, and the change in resource overload probability
after migration of a virtual machine is given in formula (13). In
formula (13), σmig > 0, which represents the weight of migration
time. It can be seen from formula (13) that the larger the reductions
in the resource overload probability of the physical machine after
migration of a virtual machine and the shorter the migration time,
the higher the probability that the virtual machine is selected for
migration.

Ps(vmk) =
∆pover (hi, −vmk) − σmig · Tmig (hi, vmk)∑

vmj∈VMc
∆pover (hi, −vmk) − σmig · Tmig (hi, vmk)

(13)

4.2. Virtual machine placement

A new destination host should be selected for VM placement
to complete VM migration. To completely utilize the physical ma-
chine resource, a physical machine with low utilization is selected.
The following two principles for priority are defined: (1) an un-
derutilized physical machine has higher priority, and (2) a phys-
ical machine with low overload probability has higher priority.
Because different PMs have heterogeneous energy consumption,
the workload saturation level of the physical machine is measured
by the remaining effective power after the migrated VMs have
been deployed in this physical machine, which maximizes its en-
ergy efficiency. The PMs with low-overload probability after VM
placement are selected with higher priority as the new destina-
tion hosts, which guarantee QoS. When these two principles for
placement priority are combined, the heuristic criteria for selecting
the destination physical machine hi for the virtual machine vmj
placement are defined in formula (14),

η(hi, +vmj) =

[
pL(hi) − fpower (hi, +vmj)

pL(hi) − p1(hi)

]
+ wover

[
1 −

1
|RS|

∑
r∈RS

P r
over (hi, +vmj)

]
(14)

where fpower (hi + vmj) represents the power of the physical
machine hi after deploying the migrated virtual machine vmj
;P r

over (hi + vmj) is the resource γ overload probability of the phys-
ical machine hi after deploying the migrated vmj, whose calcu-
lation method is identical to that for P r

over (hi, −vmj) (e.g., shown
in formula (11)); and wover represents the relative weight of the
overload probability, which is an experience parameter that is
learned from multiple experiments. A large η(hi, +vmj) indicates
that the physical machine hi is highly suitable as a host for the
migrated virtual machine vmj.

This paper is inspired by an idea [14], in which the pheromone
matrix τ is created to save past experience that is acquired when
searching for the feasible mapping relation between VMs and PMs.
A similar strategy is employed in this paper: after each iteration,
the pheromone matrix τ is updated via formula (15) based on the
current optimum mapping relation between VMs and PMs. The
pheromone matrix τ provides prior knowledge and experience for
improving the mapping relation in the next iteration.⎧⎪⎨⎪⎩

τ (hi, vmj) = (1 − ρ) · τ (hi, vmj) + ∆τ (hi, vmj)

∆τ (hi, vmj) =

{
Fcon(X, X̃∗), x̃∗

ij
= 1

0, otherwise
(15)

where ρ is the pheromone attenuation coefficient; X is the map-
ping relation before VM consolidation; X̃∗ is the currently iden-
tified optimum mapping relation; and x̃∗

ij = 1 indicates that the
virtual machine vmj in the current optimum mapping relation is
deployed in the physical machine hi. To completely leverage the
experience from X̃∗, the influence of themapping relation ⟨hj, vmj⟩

in X̃∗ is enhanced via formula (15). A larger pheromone τ (hi, vmj)
means that it is better to deploy the migrated virtual machine
vmj in physical machine hi based on the experience accumulated
during the solution process.

In terms of the heuristic criteria (14) and past experience from
the pheromone matrix, the probability of the physical machine
hi being selected as the destination host for the migrated virtual
machine vmj is calculated via formula (16).

Pd(hi, +vmj) =

[
τ (hi, vmj)

]α[
η(hi, +vmj)

]β∑
hk∈Ha−Ho

[
τ (hk, vmj)

]α[
η(hk, +vmj)

]β
(16)

where α and β represent the weights of heuristic information
and pheromone, respectively, whose values are obtained via the
method in [14]. Ha is the set of running PMs and Ho is the
set of overloaded PMs. In combination with the idea developed
in [14],

[
τ(hi, vmj)

]α[
η(hi, +vmj)

]β integrates the accumulated ex-
perience and heuristic information during the iteration search
process. The greater the value of

[
τ(hi, vmj)

]α[
η(hi, +vmj)

]β is,
the more advantageous the deployment of the migrated virtual
machine vmj in physical machine hi is. A higher value is helpful
to improving the resource utilization of physical machines and is
desirable for obtaining a globally optimal solution. If the value is
small, it is not advantageous for the migrated virtual machine vmj
to be deployed in physical machine hi.

Based on the above, we propose an energy-aware and overload
probability-estimation VM placement (EOPVMP) algorithm, which
is shown as Algorithm 2.

4.3. Underloaded physical machine identification

In this part, we intend to discuss how to identify the under-
loaded PMs and the benefits of doing so.

Generally, a low CPU utilization means the physical machine is
in an underloaded status. Assume that the function e(z) represents
the relation between the utilization z of CPU and the power of
host h. As seen from Fig. 1, with the increase in CPU utilization,
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the uptrend of the increased host power gradually declines; this
hypothesis is established in Eq. (17).

e(z + ∆z) − e(z)
∆z

≤
e(z ′

+ ∆z) − e(z ′)
∆z

, z ≥ z ′ (17)

Then, the following theorem holds.

Theorem 1. CPU utilization d is generated by any VM that satisfies
the following formula,

e(z + d) + e(y − d) ≤ e(z) + e(y), z ≥ y ≥ 0 (18)

where y represents the CPU utilization of the other hosts.

Proof. See Appendix.

This theorem indicates that migrating a virtual machine from
a low-utilization physical machine to another physical machine
that has relatively high utilization is helpful to reduce the energy
consumption. Because the underloaded PMs usually deploy few
VMs, switching the underloaded PMs to sleep mode is a feasible
solution to minimize the energy consumption of data centers and
reduce VM migrations. Based on these investigations, this paper
proposes to estimate the probability that a physical machine is
to be switched to sleep mode by the CPU utilization of the phys-
ical machine. Based on the estimated probability, we identify an

underloaded physical machine by randomly selecting a physical
machine that should be switched to sleep mode. The probability
for the physical machine hk to be selected is defined in (19).

Ps(hk,Hc) =
1 − U r (hk)∑

hk∈Hc
1 − U r (hi)

, r = CPU (19)

where Hc is the candidate physical machine set, which is typically
the difference set between the running PM set and the overloaded
PM set. As shown in formula (19), lower CPU utilization indicates
higher probability for the physical machine to be switched to sleep
mode.

In terms of the aforementioned analysis, an iterative strategy is
applied: in each round of iteration, a physical machine is randomly
selected based on the probability defined in (19). Based on the
EOPVMP allocation algorithm in Section 4.2, we attempt tomigrate
all VMs in the selected physical machine to other destination hosts
with higher workload. If all destination hosts satisfy the resource
constraint after hosting themigrated VMs, then this selected phys-
ical machine is switched to sleep mode. Otherwise, this physical
machine is untouched and the next iteration is performed until all
running and non-overloaded PMs are traversed. Based on this, we
propose the following underloaded physical host sleep selection
(UPHSS) algorithm.
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4.4. Virtual machine consolidation algorithm

The artificial bee colony (ABC) algorithm [16] is ameta-heuristic
algorithm. The ABC algorithm treats the feasible solution as bee
food, where a sufficient amount of food source means a higher-
quality solution. The search optimization process in the ABC al-
gorithm defines three types of bee colonies: each employed bee
forages in a food source area and corresponds to a food source;
an onlooker waits in the beehive, shares information with the
employed bee to select a food source and then forages; and a scout
searches for a new food source when the employed bee’s forage
becomes scarce.

Inspired by this strategy, assume that a feasible mapping re-
lation between VMs and PMs in VM consolidation is a food
source. The above three sub-algorithms integrate and cooperate
to simulate the artificial bee colony foraging behaviors, and both
the searching mechanism and optimization strategy of the ABC
algorithm are employed in the iterative solutions. In foraging,
an artificial bee shares the pheromone matrix to continuously
improve the mapping relation between PMs and VMs and find the
optimum solution. In the ABC algorithm, each bee has a dedicated
task, which significantly improves the algorithm reliability, effec-
tively prevents search stagnation and achieves global optimization
results. Here, OPDMS, EOPVMP and UPHSS are integrated to create
the novel ABC-like foraging for VMs consolidation (ABC-like FVC)
algorithm, whose primary goal is to obtain the optimum mapping
relation between PMs and VMs at the current cycle.

First, the ABC-like FVC algorithm selects VMs from the over-
loaded PMs for migration; second, these VMs are reallocated. Fi-
nally, the underloaded PMs are switched to sleep mode, and the
quality of themapping relation after VMconsolidation is evaluated.

In the ABC algorithm, an onlooker randomly selects a honey
source that is guarded by an employed bee based on the solution
quality. In this paper, a pheromonematrix is created for eachhoney
source, i.e., themapping relation betweenPMs andVMs, to save the
past experience accumulated during the process of searching for a
feasible mapping relation. The probability that a honey source is
selected is redefined in (20).

Ps(bee) =
fbest (bee)∑

bee∈employed fbest (bee)
(20)

where fbest (bee) is the employed bee’s historically best honey
source.

Therefore, host overload detection, VMmigration selection and
VM placement in VM consolidation are abstracted into the bee
colony foraging optimization problem in the ABC algorithm, which
is comprised of four phases: (1) the employed bee starts to forage,
i.e., search for a feasible mapping relation between PMs and VMs
by the ABC-like FVC algorithm; when a newly discovered mapping
relation is superior to the optimal honey source owned by the
employed bee, i.e., f (bee) > fbest (bee), the optimization solution
is updated; (2) an onlooker randomly selects a honey source based
on the probability of the honey source being selected. The feasible
mapping relation is searched based on the pheromone matrix of
this honey source, i.e., a new mapping relation is recalculated
via Algorithm 4, and the mapping relation is improved via the
pheromone matrix of the selected honey source. When the newly
discovered allocation relation is superior to the optimized honey
source, the optimization solution is updated; (3) a scout resets
each honey source whose optimization solution has not been up-
dated for several iterations by initializing the pheromone matrix
of this honey source and applying the discovered feasible mapping
relation as the optimization solution for this honey source, and (4)
the pheromonematrix of each honey source is updated via formula
(15). These four procedures constitute a complete cycle of iteration
in VM consolidation.

Based on the above, these four procedures are hybridized to
form an energy-aware and multiple-resource overload probability
constraint-based VM consolidation (EC-VMC) method.

5. Implementation and simulation

5.1. Experiment arrangements

This study employed the CloudSim toolkit [46] as the simulation
platform. Since the lower bound on the number of VMs in the
employed workload traces is approximately 800, the experiments
simulated a cloud data center comprised of 800 heterogeneous
physical machines. These physical hosts are classified into two
categories: HP Enterprise ProLiant DL360 Gen9 and Huawei Tech-
nologies Co., Ltd. Fusion Server RH2288H V3. The detailed config-
urations are listed in Table 1. Besides, eight types of VMs are used



Z. Li et al. / Future Generation Computer Systems 80 (2018) 139–156 147

Table 1
The physical machine instances.

Types CPU RAM (GB)

HP Enterprise ProLiant
DL360 Gen9

Intel Xeon E5-2699 v3
36 Cores 2300 MHz

64

Fusion Server RH2288H V3 Intel Xeon E5-2698 v4
40 Cores 2200 MHz

64

Table 2
The virtual machine instances.

Types CPU frequency (MIPS) RAM (GB)

High-CPU medium instance 2500 0.85
Extra large instance 2000 3.75
Small instance 1000 1.7
Micro instance 500 0.613
M3.medium 1 × 2500 3.75
M3.large 2 × 2500 7.5
M3.xlarge 4 × 2500 15
M3.2xlarge 8 × 2500 30

Table 3
The properties of Planetlab trace.

Date Number of VMs Mean (%) St. dev. (%)

03/03/2011 1052 12.31 6.68
06/03/2011 898 11.44 6.77
09/03/2011 1061 10.70 7.35
22/03/2011 1516 9.26 6.24
25/03/2011 1078 10.56 6.32
03/04/2011 1463 12.39 7.03
09/04/2011 1358 11.12 6.95
11/04/2011 1233 11.56 7.13
12/04/2011 1054 11.54 7.22
20/04/2011 1033 10.43 8.10

in the presented experiments, four of them are introduced in [22]
and the remainder are the type of M3 of the well-known EC2 [47].
The virtual machine instances are shown in Table 2. In Table 2, the
frequency of the hosts’ CPUs is mapped onto MIPS ratings [22]:
2300 MIPS each core of the HP Enterprise ProLiant DL360 Gen9
server and 2200 MIPS each core of the Fusion Server RH2288H
V3 host. And more, the number in front of the expression of CPU
frequency, such as the ‘‘2’’ in ‘‘2×2500’’ for ‘‘M3.large’’ in Table
2, denotes two pieces of vCPU [47]. After creating physical host
instances and VM instances on the CloudSim platform, the VMs
are deployed to different PMs by the method of PABFD [22]. After
each cycle of VM consolidation, the VMs upload new workloads
and change the overall resource demands.

A VM consolidation is conducted every 5 min, so the total
number of consolidations is 288 one day. The comparison exper-
iment include two parts: (1) the analytical comparison between
the EC-VMC algorithm and the single-resource VM consolidation

methods that address the optimization of energy consumption of
data centers; and (2) the analytical comparison among EC-VMC
algorithm and several existing multi-resource VMs consolidation
methods. In this paper, two types of workload trace, the PlanetLab
trace [43] and Bitbrains trace [48], are employed. PlanetLab only
records CPU usage and packages the text file of time series of
CPU usage; thus, the PlanetLab trace is used for part (1) of the
comparison experiments. The statistical properties of the Plan-
etLab trace are shown in Table 3. Bitbrains includes CPU usage,
memory, and workload of network bandwidth; thus, its trace for
a multi-resource workload is taken for part (2). Table 4 shows the
relevant statistical properties. In a real data center, since the actual
workload is regular and periodic, we take one-day workloads from
the different datasets of workload traces respectively, thus can get
two experimental samples, one is for part (1) and another for part
(2). At last, in the twoparts of the experiments, the EC-VMC-related
parameters are set as follows: wmig = 9, wover = 0.5, ρ = 0.2,
α = 1 and β = 1.5. The numbers of employed bees and scout bees
are both 10, and the number of onlooker bees is 5. The maximum
number of iterations is 25. All these experimental parameters are
set based on the experience values.

Additionally, to simulate the process of live VMmigrationmore
accurately, this paper draws on the BaseModel ofMigration Perfor-
mance [45] to simulate the variation of dirty pages inmemory, and
uses this model to get the virtual machine migration time Tmig and
the total network traffic Vmig . With respect to the model in [45], it
is necessary to set a dynamically changing dirty page memory rate
D (in MB/s) for each virtual machine and a memory transmission
rate R (in MB/s) during migration; D is assumed to be a random
variation, and it satisfies D/Vmem ∼ N(0.3, 0.1), where Vmem is
the current size of VM memory during migration, so that we set
R = D + 100 MB/s in the experiments according to the adaptive
data transmission rate strategy in [45].

5.2. Comparison with single-resource constraint-based VM consoli-
dation

5.2.1. Evaluation indices
In [22], SLA violation Time per Active Host (SLATAH), Per-

formance Degradation due to Migrations (PDM), SLA Violations
(SLAV), Energy Consumption (EC), and Energy and SLA Violations
(ESV) were used for performance valuation. In this section, these
indices are employed to evaluate the performances of the com-
pared algorithms objectively.

SLATAH is defined in (21). SLATAHmeasures the service quality
of a running physical machine.
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SLATAH =
1
n

n∑
i=1

T s
i

T a
i

(21)

where T s
i is the SLAV duration resulting from overloaded CPU

resources for the physical machine hi , T a
i denotes the running time

of the physical machine hi, and n represents the number of PMs.
PDM is defined in (22). It reflects the extent of the performance

decline resulting from VMmigrations.

PDM =
1
m

m∑
j=1

Cd
j

C r
j

(22)

where cdj denotes the size of the unsatisfied demand for CPU
resources as a result of vmj migration, cdj is the size of the demand
for CPU resources from the virtual machine vmj, and m represents
the number of VMs.

SLAV comprehensively evaluates the QoS of a data center on a
single day. It is calculated by formula (23).

SLAV = SLATAH × PDM (23)

The lower the values of SLATAH, PDM, and SLAV are, the better
the QoS is.



Z. Li et al. / Future Generation Computer Systems 80 (2018) 139–156 149

Table 4
The properties of Bitbrains trace.

Date Number of VMs CPU Memory Bandwidth

Mean (%) St. dev. (%) Mean (%) St. dev. (%) Mean (%) St. dev. (%)

02/08/2013 1237 7.20 5.97 8.83 4.35 0.76 1.84
04/08/2013 1233 8.05 4.83 9.75 4.12 0.80 1.77
05/08/2013 1232 8.99 6.36 9.13 4.10 0.83 1.72
08/08/2013 1209 10.27 6.64 9.69 4.52 0.70 1.67
11/08/2013 1202 9.06 6.92 9.74 4.41 0.96 2.04
15/08/2013 1191 8.71 5.67 9.68 4.20 0.95 1.93
19/08/2013 1188 8.13 5.34 9.20 3.63 0.88 1.76
20/08/2013 1186 8.99 3.45 9.10 3.05 0.79 1.46
22/08/2013 1183 5.89 3.16 8.83 3.21 0.94 1.60
24/08/2013 1175 9.56 4.68 9.40 3.75 1.29 2.56

Table 5
Simulation results using Planetlab trace with four indices.

Method EC (kWh) SLAV VMMs ESV (%)

EC-VMC 31.35 0.00068 6153 0.0213
MAD-MMT-2.5 64.73 0.04025 33854 2.6054
MAD-MC-2.5 65.42 0.05126 35343 3.3534
MAD-RS-2.5 58.57 0.07205 27916 4.2200
LR-MMT-1.2 62.89 0.03299 31744 2.0747
LR-MC-1.2 63.05 0.04431 31891 2.7937
LR-RS-1.2 55.28 0.06167 24716 3.4091
IQR-MMT-1.5 65.93 0.04540 34614 2.9932
IQR-MC-1.5 66.91 0.05100 35850 3.4124
IQR-RS-1.5 58.68 0.06923 27514 4.0624
ST-MMT-0.8 65.44 0.04082 34250 2.6713
ST-MC-0.8 66.30 0.04777 35196 3.1672
ST-RS-0.8 59.01 0.06516 28194 3.8451

EC indicates the energy consumption of a data center in a
single day. A low EC value indicates high energy utilization and
energy efficiency of the data center. The comprehensive evaluation
index ESV, which is defined in formula (24), reflects the energy
consumption, number of VMmigrations, and service quality.

ESV = EC × SLAV (24)

A low ESV value indicates good performance in saving energy
and guaranteeing the service quality of the data center.

Since VMs always suspend service when they are in live migra-
tion, prolonged VM migration may also further affect QoS. Reduc-
ing the number of insignificant VM migrations and the total num-
ber of VMmigrations is beneficial to improving the QoS. Therefore,
if limitedVMmigrations can yield ideal effects of VMconsolidation,
it indicates that the VM consolidation method is highly efficient.

5.2.2. Results analysis
In this section, four host overload detection algorithms (ST [3],

MAD [22], IQR [22], LR [22]) and three VM migration selection
algorithms (MMT, MC and RS) are hybridized to form 12 combi-
nation methods, which are compared with the EC-VMC algorithm.
These combination methods employ PABFD [22] to conduct VM
placement. They only consider the effect of a single-factor CPU
resource; the experimental parameters are set based on the values
in [3,22].

Table 5 lists the simulation results for various combination
methods versus the EC-VMC algorithm. The numerical value after
each algorithm’s name is the current parameter setting for this
algorithm, which is the experience parameter. The results indicate
that the EC-VMC method consumes the least amount of energy
and that IQR-MC-1.5 consumes the greatest amount of energy. The
experimental results based on the PlanetLab trace indicate that the
EC index of EC-VMC is only 46.9% of IQR-MC-1.5 and 56.7% of LR-RS.
Compared with other combination methods, EC-VMC significantly
reduces the energy consumption because the UPHSS in EC-VMC

switches as many underloaded PMs to sleep mode as possible,
which yields excellent energy savings.

Next, themethods are compared and analyzed in terms of SLAV.
In Table 5, EC-VMC has optimal SLAV, followed by LR-MMT. The
simulation results using the PlanetLab trace show that EC-VMC’s
SLAV is only 2.1% of LR-MMT’s SLAV. The experimental results
using the PlanetLab trace also indicate thatMAD-RS has the highest
SLAV and that EC-VMC’s SLAV is only 0.9% of MAD-RS’s SLAV.
Therefore, EC-VMC’s capability of guaranteeing QoS is superior to
those of the other algorithms.

Because SLAV addresses SLATAH and PDM, SLATAH and PDM
are analyzed as follows. Fig. 2 shows the comparison in terms of
SLATAH. As shown in Fig. 2, EC-VMC effectively guarantees the
QoS of running PMs and reduces their resource overload risk. The
primary reasons are that EC-VMC considers the randomness of
demands for each resource and constrains the utilization of each
resource, which effectively guarantees superior QoS of the running
PMs. When redeploying a virtual machine, the EOPVMP algorithm
considers the overload probability of the physical machine after it
hosts the migrated virtual machine, which guarantees its running
QoS from another perspective. Fig. 3 shows the comparison of PDM
among the methods; the EC-VMC method effectively reduces the
probability of influencing service quality by ‘‘service suspension
during live VM migration’’. According to the combined analysis
with Fig. 2, the main reason for this situation is that the EC-VMC
method effectively guarantees excellent QoS of the running PMs
and reduces host overload risk, which results in a reduction in
the number of VM migrations triggered by host overload. The
‘‘VMMs’’ index in Table 5 also proves this point. The VMMs index
reflects the VMmigrations. TheOPDMS algorithm reduces the time
of VM migration and avoids the occurrence of resource demand
violations from VMs due to prolonged migration time. Therefore,
the EC-VMCmethod has a lower PDM than the other methods, and
the EC-VMC method has an outstanding SLAV compared with the
other methods.

Regarding the number of VM migrations, in Table 5, EC-VMC
has the lowest number of triggered VM migrations, followed by
the LR-RS algorithm. However, the experimental results using the
PlanetLab trace reveal that the number of VMmigrations triggered
by EC-VMC is only 24.9% that of LR-RS. The results also show that
IQR-MC has the greatest number of VM migrations, which is 5.8
times that of EC-VMC. This is primarily because EC-VMC accurately
identifies the variation patterns of the workload and effectively
reduces the host overload risk and number of VMmigrations.

The performances obtained using the ESV index are shown in
Table 5, which reveal that the comprehensive performance of EC-
VMC is the best. LR-MMT is the second best, with a performance
that is considerably lower than that of EC-VMC. According to the
simulation results using the PlanetLab trace, the ESV index of EC-
VMC is only 1.0% of that of LR-MMT, whereas the ESV index of
MAD-RS is the worst, being 19.8 times as great as that of EC-VMC.
Therefore, having the best comprehensive performance, EC-VMC is
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Fig. 2. Comparison of SLATAH.

Fig. 3. Comparison of PDM.

apparently superior to the other algorithms. These results indicate
that EC-VMC has realized its ultimate optimization objectives of
reducing the energy consumption of data centers and number of
VMmigrations.

To conduct a thorough analysis of the EC-VMC algorithm’s effi-
ciency, the variations in the numbers of running PMs andmigrated
VMs during all 288 consolidation cycles are analyzed, as shown
in Fig. 4 and Fig. 5. In the graphs, the lines in different colors
represent different algorithms, and their corresponding relations
are shown on the right-hand side of the graph. Figs. 4 and 5
are divided into upper and lower sub-graphs. The upper graph
represents the results from the initial VM consolidation to the
288th VM consolidation. To improve the visual discrimination, the
lower sub-graph is a partially enlarged image of the upper sub-
graph, representing the results from the 25th VM consolidation to
the 288th VM consolidation.

Fig. 4 shows the variation in the number of running PMs with
respect to the VM consolidation, which continues to be performed
periodically. As shown in the upper subgraph in Fig. 4, EC-VMC can
turn off many PMs faster than the other algorithms to conserve a
massive amount of energy. The lower subgraph in Fig. 4 shows that
changes occur in each cycle from the 25th VM consolidation to the
288th VM consolidation. EC-VMC can maintain no more than 10
running PMs, which is lower than the upper limits of the other
compared algorithms; thus, the energy consumption for EC-VMC
is apparently lower.

Fig. 4. The number of running PMs varying with the cycle of VMs consolidation.

Fig. 5. The number of VMmigrations varying with the cycle of VMs consolidation.

Fig. 5 shows the variation in the number of VMmigrations with
respect to the cycle of the ongoing VM consolidation. The upper
subgraph in Fig. 5 shows that changes occur from the initial VM
consolidation to the 288th VM consolidation. The number of VM
migrations triggered by the EC-VMC algorithm within the initial
25 cycles is greater than those triggered by the other algorithms.
In other words, many PMs have been turned off by the EC-VMC
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Table 6
Simulation results using Bitbrains trace with four indices.

Method EC (kWh) SLAV VMMs ESV (%)

EC-VMC 27.49 0.00061 4491 0.0168
VectorGreedy 51.10 0.00134 8596 0.0685
UP-BFD 42.29 0.00219 8725 0.0926
ACS-VMC 60.71 0.00141 7814 0.0856

algorithm in theprevious cycles, resulting in excess VMmigrations.
As shown in the lower subgraph in Fig. 5, after the 25th VMconsoli-
dation, the number of VMmigrations triggered by EC-VMC remains
within 0–30 approximately, which is remarkably lower than those
triggered by the other algorithms. This result indicates that EC-
VMC can perform appropriate load balancing through limited VM
migrations. Efficient VM consolidation limits the number of VM
migrations in the subsequent consolidation. Therefore, the total
number of VMmigrationswith the EC-VMCalgorithm is lower than
with other algorithms.

Compared with the existing single-resource VM consolidation
algorithms, EC-VMC has distinct advantages in terms of reducing
energy consumption, guaranteeing QoS and making more reason-
able VMmigration decisions.

5.3. Comparison withmulti-resource constraint-based VM consolida-
tion

5.3.1. Evaluation indices
In this section, besides employing the evaluation indices in

Section 5.2.1, we present two additional indices: one is memory
demand violations (MDV), which aims to evaluate the capability
to meet the memory demands of VMs; the other is bandwidth
demand violations (BDV), which aims to evaluate the capability
to meet the bandwidth demands of VMs. MDV is defined in for-
mula (25).

MDV =

⎛⎝ 1
|VM|

∑
vmj∈VM

T r
v (vmj)

T r
a (vmj)

⎞⎠
×

⎛⎝ 1
|VM|

∑
vmj∈VM

C r
v (vmj)

C r
a (vmj)

⎞⎠ , r = MEM (25)

where T r
v (vmj) denotes the duration of the resource demand vi-

olation resulting from the vmj requests to the memory resource,
T r
a (vmj) represents the total duration resulting from the vmj re-

quests to the memory resource; C r
v (vmj) denotes the unsatisfied

memory resource required capacity required by the vmj, and
C r
a (vmj) is thememory resource capacity required by vmj. BDV, for-

mulated using the same template as MDV, is rewritten as formula
(26), which addresses bandwidth resource.

BDV =

⎛⎝ 1
|VM|

∑
vmj∈VM

T r
v (vmj)

T r
a (vmj)

⎞⎠
×

⎛⎝ 1
|VM|

∑
vmj∈VM

C r
v (vmj)

C r
a (vmj)

⎞⎠ , r = BW (26)

5.3.2. Results analysis
The EC-VMC algorithm is also compared with three multi-

resource VM consolidation algorithms, i.e., VectorGreedy [15], UP-
BFD [30], and ACS-VMC [31], using the Bitbrains trace.

Table 6 shows the results of the comparison of EC-VMC with
the three existing multi-resource VM consolidation algorithms by
employing the indices EC, SLAV, VMMs, and ESV. Undoubtedly,

Fig. 6. Comparison of SLATAH.

the energy consumption for EC-VMC is the lowest, whereas the
electrical energy consumed by ACS-VMC is the highest. According
to the simulation results using the Bitbrains trace, the EC index
of EC-VMC is 45.3% that of ACS-VMC and 65.0% that of UP-BFD.
Compared with other methods, EC-VMC has significantly better
capability to save energy because the sub-algorithm UPHSS in EC-
VMCswitches asmanyunderloadedPMs as possible to sleepmode;
and EC-VMC effectively avoids local optima due to the multiple
iterations, such as the mechanism in the ABC algorithm. In this
manner, global optimization results and better energy savings are
achieved.

As shown in Table 6, the SLAV-driven performance of EC-VMC
is the best, and that of VectorGreedy is the second best. The per-
formances of ACS-VMC and VectorGreedy are approximately the
same, whereas UP-BFD exhibited the worst performance. Accord-
ing to the experimental results using the Bitbrains trace, the SLAV
value of EC-VMC is only 45.5% that of VectorGreedy and 27.9% that
of UP-BFD. The SLAV index integrates both SLATAH and PDM. Thus,
the in-depth analytical study of SLATAH and PDM is discussed in
the following.

Fig. 6 shows the performance comparison using the SLATAH
index. As shown in Fig. 6, the SLATAH index of EC-VMC is the
lowest because it limits resources utilization depending on the ran-
domness of resource demands and guarantees superior QoS of the
running PMs. Furthermore, when amigrated VM is redeployed, the
overloading risk of the destination physical machine is considered
by the proposed EOPVMP algorithm; thus, the QoS of the desti-
nation physical machine is further guaranteed. Fig. 7 shows the
comparison in terms of the PDM index. Compared with the other
algorithms, the PDM index of EC-VMC is the lowest. EC-VMC can
effectively reduce the probability of QoS deterioration due to the
service suspension resulting from VMmigrations. According to the
comprehensive analysis of Fig. 6, EC-VMC can effectively guarantee
QoS of the running PMs, thereby reducing the overloading risks.
Consequently, the number of insignificant VMmigrations resulting
from the resource overloading of PMs is reduced. The simulation
results of the number of VMmigrations in Table 6 also demonstrate
this outcome. Furthermore, the OPDMS algorithm can effectively
avoid the demand violations of VMs resulting from prolonged VM
migration. Therefore, the PDM index of EC-VMC is lower than those
of the other algorithms. Moreover, its SLAV index is the lowest
among the compared algorithms.

Regarding the number of VMmigrations, in Table 6, the number
of VM migrations triggered by EC-VMC is the lowest, followed
by ACS-VMC. The number of VM migrations for EC-VMC is only
57.5% that of ACS-VMC. Furthermore, the number of VMmigrations
triggered byUP-BFD is the highest, being 1.94 times as great as that
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Fig. 7. Comparison of PDM.

Fig. 8. Comparison of MDV.

Fig. 9. Comparison of BDV.

triggered by EC-VMC. Overall, EC-VMC has the capability to reduce
the number of VMmigrations and overloading risks of hosts.

As shown in Table 6, the ESV value of EC-VMC is the low-
est, indicating that it has the most comprehensive performance
among the compared algorithms. The ESV value of EC-VMC is only
24.5% that of VectorGreedy, whereas the ESV value of UP-BFD is
the worst, being only 5.51% times as great as that of EC-VMC.
Therefore, the comprehensive performance of EC-VMC is the best,
and the proposed algorithm is apparently superior to the other
algorithms.

Fig. 8 shows the MDV index of the compared algorithms. Com-
pared with other related algorithms, EC-VMC is designed to allow

for proper allocation of memory resources and to ensure a low
probability of demand violation of VMs for memory resources. The
MDV values of ACS-VMC and UP-BFD are relatively high compared
with that of EC-VMC. Fig. 9 shows the comparison results based
on the BDV index among the related algorithms. EC-VMC and
VectorGreedy have approximately the same capability to guar-
antee QoS of networks. The MDV and BDV indices of ACS-VMC
are the highest among those of the compared algorithms. The
primary reason is that the frequent VM migrations by ACS-VMC
result in extra consumption of memory and network resources;
this is supported by the experimental results in Table 6. Another
reason is that ACS-VMC does not take into account the influence of
dynamic changes, especially the stochastic resource demands for
memory and network bandwidth. In summary, EC-VMC has rela-
tively stronger capability to guarantee QoS among the compared
algorithms.

The optimization objectives of EC-VMC are to reduce the energy
consumption of the data center and the number of VMmigrations.
Since the energy consumption of a data center is proportional
to the number of running PMs, for a sufficient analysis of the
effectiveness of EC-VMC, the number of running PMs in the data
center at each cycle along with the ongoing VM consolidation is
analyzed, and the results are shown in Fig. 10.

Fig. 10 shows the variation in the number of running PMs
with respect to each cycle of the ongoing VM consolidation. The
upper subgraph in Fig. 10 shows the changes from the initial VM
consolidation to the 288th VMconsolidation. Comparedwith other
algorithms, EC-VMC turns off many PMs relatively fast. To enhance
the ability to distinguish among the compared algorithms, the
lower subgraph in Fig. 10 is a partially enlarged image of the upper
subgraph; it shows the changes from the 25th VM consolidation
to the 288th VM consolidation. EC-VMC maintains the number
of running PMs at 5–10, and this range is apparently lower than
those of the other algorithms. In the latter period, i.e., after the
25th cycle of VM consolidation, the numbers of running PMs by
the UP-BFD and VectorGreedy have been stably maintained at 10–
25 respectively. ACS-VMC maintains the number of running PMs
at approximately 25. In conclusion, the total number of running
PMs with EC-VMC throughout all 288 cycles of VM consolidation
is lower than those of the compared algorithms; thus, its energy
consumption is lower than those of the others.

Fig. 11 shows that the constant changes in the times of the
triggered VM migrations during each cycle vary with VMs consol-
idation. The upper subgraph in Fig. 11 shows the changes over the
288 cycles of VMs consolidation, from the initial VM consolidation
to the 288th VM consolidation. The number of VMmigrations trig-
gered by EC-VMCwithin the initial 25 cycles is greater than those of
the other algorithms. Since many PMs have been turned off in the
initial 25 cycles, many VM migrations occur during the period. To
enhance the ability to distinguish among the compared algorithms,
the lower subgraph is a partially enlarged image of the upper
subgraph. It shows the changes from the 25th VM consolidation to
the 288th VM consolidation. After the 25th VM consolidation, the
number of VM migrations triggered by EC-VMC is approximately
0–25, which is lower than those of other algorithms. This result
indicates that the probability of re-migration for the migrated
VMs after deployed by EC-VMC declined. The result, from another
aspect, indicates that the resource allocation has been optimized
and load balancing has been performed; as a result, the number
of VM migrations triggered by EC-VMC is lower than those of the
other algorithms.
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Fig. 10. The number of running PMs varying with the cycle of VMs consolidation.

Fig. 11. The number of VMmigrations varying with the cycle of VMs consolidation.

The analytical comparison of the EC-VMC with the single-
resource and multi-resource VM consolidations show that the
proposed method is prominent in various indices, since the for-
aging strategy and search mechanism in the ABC algorithm have
comprehensively solved the issue of the optimization of resource
allocation. The EC-VMC algorithm obtains a global optimization
result, whereas the other compared algorithms prematurely fall
into local optima. On the other hand, the results also indicate that
the proper multi-resource overload probability constraint prevent
frequent resource overloading, which is helpful to improving re-
source efficiency. In general, the EC-VMC method is effective and

efficient and can reduce energy consumption, guarantee QoS, and
make reasonable VMmigration decisions.

5.4. Effectiveness of the proposed energy consumption model

The proposed energy consumption model, the linear model
[3,10,14] and the nonlinear model [49] are experimentally com-
pared to validate the effectiveness of the energy consumption
model proposed in this paper. The linear model in [3] is defined as
P(u) = k ·Pmax+(1−k) ·Pmax ·u, where u is the CPU utilization, Pmax
is the maximum power of hosts, and k is usually set to 70% since
a physical machine in an idle state typically consumes 70% of its
peak energy consumption. The nonlinear model in [49] is defined
as P(u) = Pidle + (Ppeak − Pidle) · uα, α > 0, where Pidle is the power
when the host is idle and Ppeak is the peak power. The above energy
consumption models are combined with the EC-VMC method to
conduct experiments respectively. The simulation platform for the
experiment is CloudSim, and PlanetLab is used for the workload.

As VM consolidation proceeds, the total power of the running
PMs and the changes in the situation are calculated; the experi-
mental results are shown in Fig. 12.

Fig. 12 shows the changes in the sum of the powers of all
running PMs with respect to the ongoing VM consolidation. In
Fig. 12, ‘‘linear’’ represents EC-VMC using the linear model [3],
‘‘non-linear’’ denotes EC-VMC using the model in [49], and ‘‘local
linear’’ represents EC-VMC using the proposed energy consump-
tion model. It can be seen from the figure, through a limited num-
ber of VM consolidations, that initially, the use of three different
energy consumption models associated with EC-VMC can cause
the total power of the hosts to rapidly decline. The direct reason
is that through the VM consolidation, a large number of physical
machines are switched to sleepmode, and the deeper reason is that
the global optimization of the ABC algorithm makes the allocation
between VMs and PMs in the data center highly efficient. Then, the
downward trend of the sum of the host power becomes slow; the
reason for this phenomenon is that the total number of running
PMs changes little, so the energy consumption does not change
much. Fig. 4 also proves this point, and in the lower subgraph
of Fig. 4, the number of running hosts only gradually drops from
10 to 5 in the subsequent cycles of VM consolidation, making it
impossible to cause a big change in energy consumption.

In the three comparison schemes, EC-VMC using the local
linearity energy consumption model consumes less energy; this
proves the validity of the local linearity power model. In addition,
we can see from Fig. 12 that using three different energy consump-
tion models, the host energy variation trends are very similar; this
fully demonstrates that the EC-VMCmethod is not sensitive to the
energy consumption model and that EC-VMC’s effectiveness and
efficiency in saving energy and VM consolidation are due to the
global optimization using the ABC algorithm.

6. Conclusions

VM migration is an approach to technical enablement of VM
consolidation. VM migration facilitates load balancing, and VM
consolidation aims to improve the energy efficiency and QoS of
data centers. Both VM migration and VM consolidation are influ-
enced by various factors. These factors include resource properties,
such as CPU utilization, memory, bandwidth, disk size, and energy
consumption, and performance properties of data centers, such as
the stochastic workload and the dynamic and uncertain resource
demands of VMs. In a data center, the highly efficient VM consoli-
dation method attempts to achieve an appropriate balance among
reducing energy consumption, optimizing resource utilization, and
guaranteeing QoS, which is a multi-objective optimization prob-
lem with multiple resource constraints.
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Fig. 12. Total power of physical hosts varying with the cycle of VMs consolidation.

This study focuses on the energy efficiency optimization of
data centers, the reduction of the number of VM migrations, the
uncertain characteristics of various resource demands (e.g., CPU,
memory, and network bandwidth), and the essential requirements
of global optimization for VM consolidation. By reliably estimat-
ing the energy consumption of data centers, the number of VM
migrations and the probability of multi-resource overloading, as
well as the effectively adaptive constraint of resource overloading
probability, algorithms for selecting the VMs to be migrated and
VM placement, and for determining the underloaded PMs, have
been proposed. By taking the mapping relation between PMs and
VMs as the food source, the proposed sub-algorithms integrate and
cooperate to simulate the artificial bee colony foraging behaviors;
by using both the searching mechanism and optimization strat-
egy of ABC algorithm, the optimum mapping relation with multi-
resource constraints between PMs and VMs is obtained globally.
As a result, the issue ‘‘where from and where to’’ for live VM
migration is naturally resolved. The simulation results and their
analytical comparison demonstrate the apparent improvement of
EC-VMC in terms of SLATAH, PDM, SLAV, EC, ESV, the number of
VM migrations and QoS. The proposed algorithm also achieves an
optimum balance among improving energy efficiency, optimizing
resource utilization, and guaranteeing QoS. Thus, its effectiveness
and efficiency have been validated.

However, there are a few limitations that need to be further
addressed in our future works. First, the correspondence relations
between bee colony behaviors and various operations in VM con-
solidation such as host overload detection, VM placement, and VM
migration selection need further study to improve the proposed
algorithm. Second, determining how to address the issue ‘‘where
from and where to’’ for the live VM migration based only on the
well-knownABC algorithmor other similar intelligence algorithms
should be given priority. Finally, the current study only focuses on
VM consolidation in a single data center. Thus, the consolidation of
VMs among data centers should be studied to improve the QoS and
energy efficiency and to adapt to the increased demands of virtual
resource management in large-scale data centers.
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Appendix. Proof of Theorem 1

Proof. Given ∀z ≥ y ≥ 0 , we have, according to (17),

e(z + d) − e(z)
d

≤
e(y + d) − e(y)

d
, z ≥ y ≥ 0 (a)

Using y + d ≥ y = (y − d) + d and (17) gives

e(y + d) − e(y)
d

≤
e((y − d) + d) − e(y − d)

d
(b)

Combining (a) and (b) yields

e(z + d) − e(z)
d

≤
e(y + d) − e(y)

d

≤
e((y − d) + d) − e(y − d)

d
, z ≥ y ≥ (y − d) ≥ 0 (c)

We can then obtain, using (c),

e(z + d) − e(z) ≤ e((y − d) + d) − e(y − d) = e(y) − e(y − d),
z ≥ y ≥ (y − d) ≥ 0 (d)

Equivalently, e(z + d) + e(y − d) ≤ e(z) + e(y), z ≥ y ≥ 0 . This
completes the proof of (18).
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