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Abstract—In cloud data centers, virtual machine (VM) 
consolidation is one of the challenge topics. In which, the 
selection of VMs to be migrated is one of the key issues in the 
process of VM consolidation. In this paper, under consideration 
of the dynamical uncertain environment, a Bayesian networks-
based estimation model was constructed. Because excessive VM 
migrations influence the Quality of Service (QoS) of data center, 
the model aims at estimating the migration probability of VMs 
and calculating the potential total number of migrations occurred 
in physical hosts. Based on the proposed model, a Bayesian 
networks-based selection algorithm (BN-SA) for VMs to be 
migrated was proposed. The BN-SA adaptively adjusts the 
overloaded threshold and selects VMs which have relatively short 
migration time and big impact on potential migrations of host in 
the phase of reallocating VMs. The experimental results show 
that BN-SA algorithm has a promising performance. 

Keywords—Cloud Computing; VM selection; VM migration; 
Bayesian Networks  

I.  INTRODUCTION  
High energy consumption always is a huge challenge to 

resource management of data center, along with the scale 
enlargement of data centers, and this problem becomes more 
and more serious [1]. Research report of IBM pointed out that 
the average CPU utilization of physical hosts is just 15%~20% 
[2]. And [3] stated that the physical host in idle state consumes 
70% energy of its peak consumption. Obviously, many 
physical hosts are in idle that will cause low energy efficiency 
and huge waste of the resource. Currently, VM migration 
technology was used in VM consolidation in practice. The 
resource manage system migrates VMs from underutilized 
hosts employing migration technology, and then shuts down or 
switches these hosts to the sleep mode that will optimize 
resource usage and reduce energy consumption. 

As one of the energy saving technologies, virtualization 
technology has been used and researched widely. Cloud service 

providers can create multiple VMs in a single physical host and 
adjust allocation relationship between VMs and physical hosts 
through virtualization technology. According to current 
resource requirements of VMs, VMs can be consolidated to the 
minimal number of physical hosts by using live migration [4-
6]. So the consolidation can decrease the scale of active 
physical hosts. However, due to the variable workload of data 
centers, the requirements of VMs may rise, then the excessive 
consolidation may result in violating the service level 
agreement (SLA) and lead to poor QoS. In conclusion, the 
main challenge of dynamic VM consolidation is keeping 
balance between ensuring QoS and saving energy. 

Usually, dynamic VM consolidation includes four phases in 
[7]: (1) determining when a host is considered as being 
overloaded requiring migration of one or more VMs from this 
host; (2) determining when a host is considered as being 
underloaded leading to a decision to migrate all VMs from this 
host and switch the host to the sleep mode; (3) selection of 
VMs that should be migrated from an overloaded host; and (4) 
finding a new placement for the selected VMs that will to be 
migrated. It needs to be emphasized that migrated VMs need to 
stop service and the long duration of migration may influence 
the QoS of data centers. So reducing unnecessary VM 
migrations can enhance the QoS. On the other hands, [8] 
pointed out that lots of live migrations for VMs were not 
recommended, because which will cost more extra computing 
resource and increase uncertain workload as well as result in 
the poor QoS and SLA violation in data centers.   

Several research works have been done on this topic. In [9-
11], they optimize an overloaded threshold from different 
perspective respectively, and then some VMs are migrated 
from hosts which will be overloaded according to the present 
threshold. But there exist a common problem that it is easy to 
result in excessive migration. A lot of unnecessary VM 
migrations may cause the poor QoS in data centers. Three 
adaptive overloaded host detection algorithms have been 
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proposed in [7]: Median Absolute Deviation (MAD), 
Interquartile Range (IQR) and Local Regression (LR). And 
three VM migration algorithms have been proposed in [7]: 
Minimum Migration Time (MMT), Maximum Correlation 
(MC) and Random Selection (RS). The MMT algorithm 
migrates VMs with minimum migration time preferentially, the 
MC algorithm migrates VMs with highest correlation of CPU 
utilization with other VMs allocated on the host preferentially 
and the RS algorithm migrates VMs randomly. And [7] also 
proposed the Power Aware Best Fit Decreasing (PABFD) 
algorithm to reallocate VMs to be migrated. The PABFD sorts 
all the VMs on a decreasing order by their current CPU 
utilizations and allocates each VM to a host which can provide 
the least increment of the power consumption after the VM 
placed on it. However, it is easy to result in that some hosts 
with high load and suffer from poor QoS, and some hosts with 
low load and suffer from energy waste. Namely, it is hard to 
keep a promising balance between the QoS and energy 
utilization.  

In this paper, considering the variability of workload, we 
discuss a detail issue in the VM consolidation field. How to 
select VMs to be migrated from physical hosts? For this issue, 
we build a Bayesian Networks-based estimation model, which 
can estimate the migration probability of VMs and the potential 
total times of migration occurred in physical hosts. Then we 
present Bayesian networks-based selection algorithm (BN-SA) 
for VMs to be migrated. The BN-SA estimates the potential 
probability of VM migration and the possible total times of 
VM migration. According to the overloaded probability of 
physical hosts, BN-SA adaptively adjusts the overloaded 
threshold and selects the VMs which have relatively short 
migration time and big impact on the potential total migrations 
of VMs allocated on overloaded hosts. The experimental 
results show that BN-SA can efficiently improve QoS and 
reduce VM migrations while decreasing energy consumption. 

II. THE BAYESIAN NETWORKS-BASED ESTIMATION 
MODEL 

We consider a data center consisting of n  physical hosts. 
1 2{ , , , }nH h h h= � is the set of physical hosts, and 

1 2{ , , , }i mVM vm vm vm= �  is the set of VMs deployed on ih . 
The CPU capacity of jvm  is denoted as jc , jr  is the CPU 
capacity requested by jvm , and jd  represents CPU demand of 

jvm  as a percentage. Equation (1) expresses the relation of jc , 

jd and jr . The demand of ih  for CPU resource is denoted as a 
random variable iD , aggregated by VMs allocated on ih , and 
can be calculated by (2).  ja  is defined as the CPU capacity 
that the host allocates to jvm , iC  is the CPU capacity of ih , 

iu  represents CPU utilization (in percentage) of ih  and defines 
as (3). 

 j j jr d c= ⋅  (1) 

 
j i

i j
vm VM

D r
∈

= �  (2) 

 1

j i

i j
vm VMi

u a
C ∈
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Due to dynamic workloads of VMs, it is hard to model the 
VM consolidation process. Bayesian networks (BN), a 
modeling method in complex uncertainty system, can reduce 
the difficulty of knowledge accessing and complexity of 
probabilistic reasoning effectively [12]. This paper models a 
BN to estimate the probability of VM migrations as shown in 
Fig.1. The model can estimate migration probability of the VM 
according to load patterns of the host which the VM deployed 
on and probability relationship between nodes in BN. The BN 
proposed in this paper contains 9 nodes and each of them is 
expressed as follow. 

Fig. 1. The bayesian networks-based estimation model. 

Node ' . 'VM Type  (T ) is the type of VM instance, different 
types of instance with different specifications of CPU and 
memory. Node ' . 'PM Model  ( M ) is the model of physical 
hosts, for example, HP ProLiant ML110 G4 (Intel Xeon 3040, 
2 cores × 1860 MHz, 4 GB). Node ' 'demand ( d ) represents 
the current CPU demand expressed in percent, node ' 'mean  
( m ) and ' . 'St dev ( sd ) represent mean and standard deviation 
of recent resource demands of VMs respectively. According to 
that the resource demand of VMs follows normal distribution 
proposed in [13] and [14], three nodes ( ' 'demand , ' 'mean and 
' . 'St dev ) are considered to describe workload patterns of VMs. 
Node ' 'utilization ( u ) represents the CPU utilization (in 
percentage) of physical hosts. Node ' 'violate  ( v ) represents 
the violation of VM requirement. For example, if j ja r<  then 
v true= , it means that requirement of jvm  has not been 
satisfied. Generally, violations are relative to current VM 
requirements and the workload of physical hosts, 
so ' 'demand , ' 'utilization , ' . 'VM Type  and ' . 'PM Model  
should be seen as parent nodes of  ' 'violate . 

Node ' 'overloaded ( o ) is the overloaded probability of 
physical hosts. We assume that the CPU demand of jvm  
follows 2~ ( , )j j jd N μ σ . iD  is the workload of ih  and 
aggregated by workloads of all VMs allocated on it, so iD  
follows 2~ ( , )i i iD N μ σ . Where iμ  and iσ  can be calculated 
by (4) and (5) respectively. When i iD C> , the demand of ih  
exceeds its CPU performance, and this host will be overloaded 

demand

mean

.St dev

violate

 utilization

overloaded  

migration  

.VM Type  

.PM Model
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inevitably. So the overloaded probability of ih  is defined as (6), 
where Φ  is the probability distribution function of normal 
distribution. Node ' 'utilization   and  ' 'overloaded  are used to 
describe the load state of physical hosts. 

 
j i

i j j
vm VM

cμ μ
∈

= ⋅�  (4) 

 ( )2

j i

i j j
vm VM
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∈

= ⋅�  (5) 

 ( )over Pr 1 Pr( ) 1i i i
i i i i

i

C
P D C D C

μ
σ

� �−
= > = − ≤ = − Φ � �

� �
 (6)  

Node ' 'migration ( mig ) represents the migration of VMs, 
if a VM is migrated then mig true= , otherwise mig false= . 
To estimate the migration probability of VMs with different 
demand patterns under physical hosts with different load states, 
we set these above 8 nodes as parent nodes of ' 'migration . 

III. THE BN-BASED SELECTION ALGORIGTHM 

A. The Probability Estimation Of VM Migration 
d , m , sd , u  and o introduced in section II are continuous 

stochastic variables, but they need to be discretized for 
estimating probability in BN. Value ranges of these stochastic 
variables can be divided into m  bins, these bins are defined in 
(7), in which all of value ranges of those variables are [0,1] . 

 1 2
1 1 2 10, , , , , ,1m

mB B B
m m m m

−	 � 	 � 	 
= = =� �� � � �
 � 
 � 
 �
�   (7) 

 ( ) ( )
1

m

B b
b

f x b I x B
=

= ⋅ ∈�  (8) 

Equation (8) defines the function Bf  which can map values to 
the relative bin, where ( )bI x B∈  is used to judge whether x  is 
belong to bB , if bx B∈  then ( ) 1bI x B∈ = , otherwise 

( ) 0bI x B∈ = . According to maximum likelihood estimation, 
the probability distribution of nodes in bayesian networks can 
be determined by observations. We assume iX  is one node of 
the network and iR   is the value set of it, then its parent nodes 
has iq  states. The conditional probability of iX k=  is defined 
as (9), when the state of parent nodes is j , 

 ( )( )
, 0

Pr |
1 ,

i

i

ijk
ijk

k Rijk
k R

i i

i

e
e

e
X k X j

otherwise
R

π
∈

∈
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>�

�
= = = �
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where ijke  is the number of samples which meet iX k=  and 

( )iX jπ =  in observations, and 
i

ijk
k R

e
∈
�  is the number of 

samples which meet ( )iX jπ = . The migration probability of 

jvm  allocated on ih  can be estimated by (10). As show in (11), 
function ( )vfπ maps the observations of parent nodes 

( ) ( , , , )v d u T Mπ =  to corresponding states. The function 

( )migfπ  do the same work like ( )vfπ . 
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B. Adaptive Host Overloaded Detection 
Algorithm 1:EOP 

1: Input: ih  

2: Output: iisOverloaded  

3: Use (6) calculate over
iP  

4: Use (12) calculate u
iT  

5: if u
i

iu T>  then 

6: iisOverloaded true←  

7: else 

8: iisOverloaded false←  

9: end if 

As a result of variable workloads of cloud data centers, the 
host overloaded detection algorithm based on static threshold 
cannot adjust reserved resource according to variable 
workloads dynamically, and might allocate resources of data 
centers unreasonably. In order to cope with this problem, 
Estimation of Overloaded Probability (EOP) algorithm was 
proposed and used to detect physical hosts with overloaded risk. 
The current resource utilization of host can reflect the recent 
load level, and the overloaded probability measures the 
potential overloaded probability of host with current load 
pattern. In order to consider the two factors comprehensively, 
we proposed two assumptions: (1) when the overloaded 
probability is 0, the threshold will be set 100% and none VMs 
need to be migrated allocated on the host; (2) when the 
overloaded probability is 100%, the host will be not overloaded 
if the utilization is less than one specific value. In conclusion, 
the threshold u

iT of host ih  is defined as (12), 

 u over1i iT s P= − ×   (12) 

where parameter s  represents the confidence of overloaded 
probability and can weighs the relationship between resource 
utilization and QoS. When s  is relatively big, u

iT  will be set 
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down drastically for the rise of over
iP  that make sure QoS. On 

the other hand, s  is relatively small, u
iT  will keep high-level 

that tend to improve energy efficiency. If the CPU utilization of 
ih  exceeds the threshold, ih  should be seen overloaded and 

some VMs have to be migrated from it. EOP algorithm is 
described in Algorithm 1. 

C. Selecting the Virtual Machine to be Migrated 
When a physical host is considered to be overloaded, in 

order to improve QoS of the host, some VMs need to be 
migrated to reduce overloaded probability. Migrated VMs need 
to stop service that impact QoS. In order to reduce migration 
time, VMs which have shorter migration time relatively to the 
other VMs allocated to the host should be migrated 
preferentially. After a VM has been migrated, the CPU 
utilization, the overloaded probability of the host and the 
migration probability of remaining VMs allocated to the host 
will change. According to the migration probability estimation 
method by bayesian networks defined in section III part A, the 
total potential migration times of ih  can be calculated by (13), 
after the host ih  migrated the kvm . In (13),  k

iu−  represents the 
CPU utilization of ih , denoted as (14). over

i kP −  is the overloaded 
probability after ih  migrated kvm , denoted as (15). After ih  
migrated kvm , the average of recent requirements of resource 
and its standard deviation are calculated by (16) and (17) 
respectively. 

 ( )
{ }

mig over, , , , 1
j i k

k k i k
i j j j i

vm VM vm
M P d u Pμ σ− − −

∈ −

= ⋅�   (13) 
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∈ −
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k
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vm VM vm
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∈ −
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To reduce the following VM migrations, VMs with lower k
iM −  

relatively to the other VMs allocated to the host should be 
migrated preferentially. Synthesizing migration time and the 
potential VM migrations on the host, the criterion of VM 
selection is defined in (18). 

 M
i k kk

i
i

ram
g M

net
α− −= + ⋅  (18) 

In (18), kram  is the amount of memory utilized by kvm , and 

inet  is the bandwidth spared by ih . α  is the weight of k
iM −  

relatively to migration time. Based on the above content, the 
VM selection algorithm based on BN is proposed. The BN-SA 
uses EOP to detect the host firstly, then BN-SA will migrate 
VMs with minimize criterion of VM selection from overloaded 
hosts preferentially. The BN-SA is described in algorithm 2. 

Algorithm 2: BN-SA 

1: Input: ih  

2: Output: mVM  

3: mVM ← ∅  

4: while ( )iEOP h true=  do 

5: migvm ← ∅  

6: ming MAX←  

7: for all k ivm VM∈  do 

8: Use (18)  calculate M
i kg −  

9: if M min
i kg g− <  then 

10: min M
i kg g −←   

11: mig kvm vm←  

12:       end if 
13: end for 
14: { }m m migVM VM vm← �  

15: { }migi iVM VM vm← −  

16: end while 

IV. SIMULATION AND ANALYSIS 

A. Simulation Environment 

TABLE I.  WORKLOAD DATA CHARACTERISTICS (CPU UTILIZATION). 

Date Number of VMs Mean (%) St. dev. (%) 

03/03/2011 1052 12.31 17.09 

06/03/2011 898 11.44 16.83 

09/03/2011 1061 10.70 15.57 

22/03/2011 1516 9.26 12.78 

25/03/2011 1078 10.56 14.14 

03/04/2011 1463 12.39 16.55 

09/04/2011 1358 11.12 15.09 

11/04/2011 1233 11.56 15.07 

12/04/2011 1054 11.54 15.15 

20/04/2011 1033 10.43 15.21 

The experiment simulated a data center consisting of 800 
heterogeneous physical hosts in CloudSim [15], these physical 
hosts are divided into two categories: Hp ProLiant ML110 G4 
(Intel Xeon 3040 2cores 1860MHz, 4GB) and Hp ProLiant 
ML110 G5 (Intel Xeon 3075 2cores 2260MHz, 4GB). In this 
experiment, there are 4 types of VMs: High-CPU Medium 
Instance (2500MIPS, 0.85GB), Extra Large Instance 
(2000MIPS, 3.75 GB), Small Instance (1000MIPS, 1.7GB) and 
Micro Instance (500 MIPS, 613 MB). Workloads used in the 
experiment are 10 days real world trace from PlantLab [16], 
which were used by previous experiments [7]. These are stored 
in simple text files: one file per VM, in which each line 
contains a CPU load, as a percentage of the requested capacity. 
The characteristics of the workload for each day are shown in 
Table I.  
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B. Performance evaluation 
In order to evaluate the algorithm performance reasonably, 

we used four metrics proposed in [7]: SLA Violations (SLAV), 
Energy Consumption (EC), VM Migrations (VMM) and ESV 
(Energy and SLA Violations). SLAV is used to evaluate QoS 
of data center which is defined in (19), 

 
1 1

ds

a r
1 1n m

i j

CT ji
T Ci j

SLAV
n m= =

= ×
� �� �
� �� � � �� � � �

� �  (19) 

where s
iT  is the total time during which the ih  has experienced 

the utilization of 100% leading to a SLAV [7]. aTi  is the 

running time of ih . dC j  is unsatisfied CPU required capacity of 

jvm  caused by migration. rC j  is CPU capacity required by 

jvm . n  and m  represent the number of physical hosts and 
VMs respectively. ESV is used to evaluate overall performance 
both of energy consumption and QoS which is defined in (20). 

 ESV EC SLAV= ×  (20) 

VMs which are migrated will stop service and influence QoS. 
So reducing unnecessary migrations can enhance QoS. 
Otherwise, frequent migration may lead to network congestion. 

C. Results analysing 
CloudSim [15] implemented some VM dynamic 

consolidation approaches, including four overloaded host 
detection algorithms (Single Threshold (ST) in [9], MAD, IQR 
and LR) and three VM selection policies (MMT, MC and RS). 
According to research in [7] and [9], we set parameter for 
overloaded detection algorithms as follows: MAD-2.5, IQR-1.5, 
LR-1.2 and ST-0.8. The parameter s  of BN-SA is 1.0, α  is 
0.4. This experiment compared the BN-SA and other 12 
combinations of detection and selection algorithms. All 
methods tested in the experiment use PABFD as VM 
placement algorithm.  

The summary of simulation results is shown in TABLE II, 
in which value behind labels (MAD-MMT, LR-MMT and 
IQR-MMT etc.) represents their parameter respectively. 
According to TABLE II, concerning energy consumption, 
combinations which use LR as detection algorithm reduce 
more energy consumption than the other combinations. ST-
MMT-0.8 consumes most energy in all tested algorithms. BN-
SA delivers the best result in saving energy, and LR-MC-1.2 
and LR-RS-1.2 are second to BN-SA. Compared to LR-MC-
1.2 and LR-RS-1.2, BN-SA is only 82.1 percent of them in 
energy consumption. According to SLAV metric in TABLE II, 
BN-SA delivers the best result, MAD-MMT-2.5, IQR-MMT-
1.5 and ST-MMT-0.8 are second to BN-SA, and the SLAV of 
BN-SA is 79.9 percent of the three combinations. The SLAV 
of LR-RS-1.2 is the highest in all tested algorithms. The SLAV 
of BN-SA is only 33.9 percent of LR-RS-1.2. So the BN-SA 
plays a good effect at enhancing QoS. Concerning VMM, BN-

SA triggered less VM migrations than other algorithms. 
Though MAD-MC-2.5 and IQR-MC-1.5 are closed to it, the 
migration times of BN-SA are only 90.3 percent of them. It is 
obviously to know that BN-SA can decrease VM migrations 
effectively and avoid network congestion caused by frequent 
migration. Considering to the last evaluation metric ESV, BN-
SA shows the best performance in all test algorithms, its ESV 
only 52.6 percent of MAD-MMT-2.5. MC and RS lose balance 
between energy consumption and QoS guarantee, and have 
worse performance than BN-SA. In conclusion, BN-SA 
proposed in this paper show the best in energy consumption, 
SLAV, VMM and ESV in all tested algorithms. BN-SA can 
keep a balance between energy consumption and ensuing QoS 
and enhance energy efficiency while reducing unnecessary 
migration. 

TABLE II.  THE SUMMARY OF SIMULATION RESULTS 

Method EC(kWh) SLAV (%) VMM ESV (%) 

BN-SA 121.97 0.002648 21142 0.3230 

MAD-MMT-2.5 183.50 0.003348 26305 0.6143 

MAD-MC-2.5 173.79 0.007111 23420 1.2358 

MAD-RS-2.5 174.86 0.007038 23642 1.2307 

LR-MMT-1.2 161.87 0.004974 28175 0.8051 

LR-MC-1.2 148.51 0.007609 23931 1.1230 

LR-RS-1.2 147.67 0.007807 23659 1.1528 

IQR-MMT-1.5 187.53 0.003288 26497 0.6166 

IQR-MC-1.5 177.70 0.006805 23394 1.2093 

IQR-RS-1.5 178.61 0.006865 23740 1.2262 

ST-MMT-0.8 188.50 0.003371 26602 0.6354 

ST-MC-0.8 179.38 0.006989 23962 1.2537 

ST-RS-0.8 180.43 0.006970 24155 1.2576 

In order to analyze BN-SA in detail, we compare BN-SA to 
other 12 combinational algorithms. Fig.2 shows the variability 
of the number of active hosts along with time of consolidation. 
These algorithms all shut down many hosts in the former 25 
periods and keep the number of active hosts under 100 later. 
Obviously, the BN-SA enables less active hosts than other 12 
combinational algorithms, so it will reduce more energy 
consumption. Fig.3 shows the change of migrations along with 
time of consolidation. These algorithms all trigger many VM 
migrations in the former 10 periods and keep the number of 
migrations under 100 later. Because that these algorithms shut 
down a large number of hosts in early phase, a lot of VMs will 
be migrated to new destination hosts from those hosts. 
Moreover, in former period, the BN-SA shut down more hosts 
than other 12 combinational algorithms that lead to more 
migrations. But the BN-SA keeps the number of migrations 
around 70 which lower than other 12 combinational algorithms 
afterwards. Fig.4 shows the change of standard deviation of 
CPU utilization by active hosts which can reflect the state of 
load balance. Along with the increasing of sleep hosts, 12 
combinational algorithms lead to load unbalanced. The BN-SA 
shows more unbalance than other 12 combinational algorithms 
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in early phase, because that BN-SA keep less active hosts and 
higher density of VMs per host than them in former periods. 
But the standard deviation of hosts activated by BN-SA keep 
around 0.15 and is better than other 12 combinational 
algorithms afterwards. 

Fig. 2. The number of active hosts varies with time 

Fig. 3. The number of migrations varies with time 

Fig. 4. The standard deviation of active host CPU utilization varies with time 

V. CONCLUSION 
This paper has studied the detail issue of selecting VMs to 

be migrated in VMs consolidation with consideration of the 
uncertain workload in data centers. Through building an 
estimation model depending on Bayesian Networks, BN-SA 
was proposed. BN-SA determines when a host is considered as 
being overloaded in terms of the overloaded probability of 
physical host. According to the conditional probability 

provided by Bayesian Networks, BN-SA selects particular 
VMs to migrate from overloaded hosts. Experimental results 
show that BN-SA can improve the QoS while decreasing 
energy consumption and reducing VM migrations. Here, we 
just only consider a few factors in data centers, further research 
can be processed in multiple resources. 
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